首页> 外文OA文献 >Information-theoretic lower bounds for distributed function computation
【2h】

Information-theoretic lower bounds for distributed function computation

机译:分布式函数计算的信息理论下界

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We derive information-theoretic converses (i.e., lower bounds) for theminimum time required by any algorithm for distributed function computationover a network of point-to-point channels with finite capacity, where each nodeof the network initially has a random observation and aims to compute a commonfunction of all observations to a given accuracy with a given confidence byexchanging messages with its neighbors. We obtain the lower bounds oncomputation time by examining the conditional mutual information between theactual function value and its estimate at an arbitrary node, given theobservations in an arbitrary subset of nodes containing that node. The maincontributions include: 1) A lower bound on the conditional mutual informationvia so-called small ball probabilities, which captures the dependence of thecomputation time on the joint distribution of the observations at the nodes,the structure of the function, and the accuracy requirement. For linearfunctions, the small ball probability can be expressed by L\'evy concentrationfunctions of sums of independent random variables, for which tight estimatesare available that lead to strict improvements over existing lower bounds oncomputation time. 2) An upper bound on the conditional mutual information viastrong data processing inequalities, which complements and strengthens existingcutset-capacity upper bounds. 3) A multi-cutset analysis that quantifies theloss (dissipation) of the information needed for computation as it flows acrossa succession of cutsets in the network. This analysis is based on reducing ageneral network to a line network with bidirectional links and self-links, andthe results highlight the dependence of the computation time on the diameter ofthe network, a fundamental parameter that is missing from most of the existinglower bounds on computation time.
机译:我们得出具有有限容量的点对点通道网络上的分布式函数计算的任何算法所需的最短时间的信息论逆(即下界),其中网络的每个节点最初都有一个随机观测值,旨在进行计算通过与邻居交换消息,以给定的置信度以给定的准确度将所有观测值的通用功能。通过在任意节点上观察给定包含该节点的任意节点子集中的观测值,我们可以通过检查实际函数值及其估计值之间的条件互信息来获得计算时间的下限。主要贡献包括:1)通过所谓的小球概率在条件互信息上有一个下界,它捕获了计算时间对节点上观测值的联合分布,函数结构以及准确性要求的依赖。对于线性函数,小球概率可以由独立随机变量之和的L'evy集中函数表示,对此,可以进行严格的估计,从而导致对现有计算时间下限的严格改进。 2)通过强大的数据处理不等式,条件互信息的上限,补充并增强了现有割集容量的上限。 3)多割集分析,可以量化计算所需信息的损失(耗散),因为该信息流经网络中的一系列割集。该分析基于将通用网络简化为具有双向链接和自链接的线型网络,并且结果突出了计算时间对网络直径的依赖性,该基本参数是大多数现有的计算时间下界所缺少的基本参数。

著录项

  • 作者

    Xu, Aolin; Raginsky, Maxim;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号